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SUMMARY

Some methods of using the Goldfeld-Quandt testdaseribed. The use of classical
statistics (mean, standard deviation) or posititatigtics (median, average deviation,
median absolute deviation) is proposed. The resaltsbe used to test the hypothesis
that the residuals from a linear regression aredsoedastic, when the experimental
distribution of the considered variable is symnoetrior asymmetrical (right-sided skew

or left-sided skew). Using Monte Carlo method, prtips of these modifications of the

Goldfeld-Quandt procedure are explored. A comparisb the effectiveness of the

described methods for environment research is prede
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1. Introduction

The pure sciences have wide application to expertation in the field of
environmental engineering. Statistics and econaoosetoffer quantitative
methods which are an important tool in the analg$isesults of environment
research. These include research on the contahedir, air quality being an
important issue. High air quality means that thesllef pollution of the air is
low. Pollution may come from sources which are esthnatural or
anthropogenic (caused by human activity). Natuodlugon is produced mainly
by forest fires or the decompaosition of living ongams, while anthropogenic
sources include transport, fuel burning, industpedbcesses and others. The
quality composition of the air is variable, and wha worse there arise
secondary pollutants, which are often more toxid barmful than the primary
ones. The course of these processes depends on fawass, including the
spatial distribution of concentrations. Another orant aspect is the “asphalt
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effect”. When we cover the soil surface with an @mpeable layer of concrete
or asphalt, the damp from the ground cannot pasket@ir. The air becomes
dry and susceptible to pollution.

Therefore a fundamental criterion to consider whriying a plot of
building land is its position. Research into thé&eef on land prices of, among
other things, the distance of the plot from therestahighway and airport
requires certain conditions to be checked, whichdeeusing the Goldfeld-
Quandt test. The object of this paper is to presertain modifications of the
use of the Goldfeld-Quandt test for investigatinge t presence of
heteroscedasticity.

2. Framework

We consider thelinear model
y=Xp +g, (1)

wherey is an n x 1 vector of observations on the dependemiable,
X=[1, Xy, ..., X1] is an n x k matrix of observations on k-1 indepand
variables,f is a k x 1 vector of unknown parameters, amslan n x 1 random
vector of errors, wherd is the vector of ones. We assume that errors are
normally distributed and the value of the errormecorresponding to an
observed value of the dependent variable is statilst independent of the
value of the error term corresponding to any otbbserved value of the
variable. The error is the distance between thervks value of the dependent
variable and its expected value. This expectatisnlabelled Ef) and
E(y) = XPB, because we assume that)Ef 0, whereO is the null vector. In
order for the estimates of the parameters not tabibsed (or best linear
unbiased estimates) one more assumption should th@dvariance should be
constant. The variance matrix is labellect)gnd D¢) = o2l , wherel is the
identity matrix. If we observe departures from themssumptions then the
estimators of the parameters are biased and cosstiygjthey are not best or
other drawbacks may to be. Hence control of theahizda very important part
of the regression analysis.

It is well known that in the presence of heteross#idity of error variances
D(g)=diag(c?,05,...,02), the least squares method has two major drawbacks:
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inefficient parameter estimates and biased variagstimates which make
standard hypothesis tests inappropriate.

Known tests for heteroscedasticity based on errmiyais include, for
example, the most popular Goldfeld-Quandt testBtteeisch-Pagan test and the
White test, described respectively by Goldfeld gnendt (1965), Breusch and
Pagan (1979), White (1980). The literature on nesfior heteroscedasticity
includes many more tests (see Dufour et al., 200Bhe test for
heteroscedasticity in regression models based @ @oldfeld—-Quandt
methodology defined by Carapeto and Holt (2003) disserves attention.

Most of these tests are what Goldfeld and Quantt nca-constructive
tests, in that they can be used to determine tlsepce or absence of
heteroscedasticity, but reveal nothing about tenfof the variance structure
(Buse, 1984).

We are interested in testing for heteroscedastinitituations with known
deflator. Our null hypothesis isoHcri2 =g? for i=1,2,...,n, and the alternative
hypothesis is iH ~H, (the symbol ~ denotes negation). The Goldfeld-@tian
test is proposed by, for example, Goldfeld and @u#&h965), Buse (1984) or
Maddala (2006) for verification of the null hyposie

The test proposed by Goldfeld-Quandt (1965) isiearmut in four steps. In
the first step we must sort the multivariate vdealith respect to the choice of
one independent variable, for exampled{l: 1=1,2,...,k-1}. This variable is a
potential deflator. Next, in the second step, we digcard one or more central
observations. In the third step, we fit separageassion analyses to each of two
remaining sets of observations. In the last stepfosn the statistic, which has
F-distribution. The statistic is the quotient oetmean squares for error from
the separate regressions.

Let X< Xg=...< Xgn, Where the second subscript denotes the number of
observations of the variableg.xWe obtain a set of observations of the
multivariate variable in the new ordering. Now wansider model (1) in the
form

Y1 X1 €
Yo |=| X2 |B+|gs |, 2)(
Y3 X3 €3
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where for j=1, 2, 3)y; andg; are nx 1 vectorsX;is an nx k dimension matrix.
Goldfeld and Quandt (1965) state that the vegtoincludes some central
observations after they are sorted with respetihéochosen potential deflator.
The choice of the yix 1 dimension vectoy, is the subject of consideration in
the next section. The choice of the vegtprfollows as a consequence of the
choice of central observations of the variahje Goldfeld and Quandt (1965)
state that the dimension of vectgrsandys; is the same, but other authors, for
example Thursby (1982), Dufour et al. (2004), takto account varying
dimensions of these vectors.

Goldfeld and Quandt (1965) proposed using theftesheteroscedasticity
after the removal of some number of central obsems. They did not specify
how many observations should be removed. They tieeveelative frequency of
cases in which the false hypothesis is rejectedsdonples of dimension n=30
and n=60 after omitting O, 4, 8, 12 or 16 centrbBkarvations, and they
estimated the power of the test. They obtainedatgest frequency for n=30
and n=60 after the omission, respectively, of 8 a@dcentral observations
(equal to 26.7%). Buse (1984) analysed the protitern=20, 40, 80 removing
20% of central observations. The same dimensiorthef removed set of
observations was used by Dufour et al. (2004) fdsnand n=100. Maddala
(2006) suggests the removal of central observatmnscrease the power of the
test, but he does not answer the question of homyrabservations to remove.

3. Results

We must quote here two sentences formulated by f@8dlcand Quandt
(1965): (i) “The power of this test will clearly pend upon the value of,rnthe
number of omitted observations; for every largeugabf n the power will be
small but it is not obvious that the power incrsas®notonically asjtends to
07, (ii) “The power of the test will clearly depemh the nature of the sample of
values for the variable which is the deflator. Thbishe variance of xis small
relative to the mean of  jxthe power can be expected to be small and
conversely”.

We believe that the number of omitted observatiolepends on the
precision of the measurements carried out andendistribution.
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The distribution of the independent variable caltbd deflator may be
defined by a cumulative probability function laleellF(x). If for a value ¥q)
where dJ(0;1), the cumulative probability function Ry is equal to g, then
X4 IS called a quantile of order g. Lower quartileedian and upper quartile
are measures of location and are labellgghXXy1/2) and ¥4 respectively. Let
us recall that many authors suggest removing 20%beervations; these are
values of the variable;xwithin the interval (¥zssy Xais)-

When for a set of several measurements the meabd®ascalculated, the
standard deviation can be calculated for the setTthe standard deviation tells
us how repeatable the placement of the measurand, how much this
contributes to the uncertainty of the mean valuentthese, the estimated
standard deviation of the mean (the standard em@ay be calculated. The
standard deviation of the mean has also been calidndard uncertainty. The
standard uncertainty is a margin whose size cahdeght of as ‘plus or minus
one standard error’. We propose using classicéitta or position statistics
with the aim of defining the set of removed obs&ores.

3.1. Method based on classical statistics

Proposition 1.When the variable pghas symmetrical distribution, the mean
is the central point of the distribution. We assutinat standard error is the
measure of deviation from the mean. From the setbskrvations of variable
Xg, SUCh that x< Xg:<...< Xq4n, We propose to remove all observations belonging
to the interval defined by the mean of the varigtlles or minus the standard
error, that is

xoD (- -2
d- __l = 1
| yn'" Vn

where I and ¢ are estimates of the mean and standard deviafidheo
variable x respectively.

Let us notice that, for the variablglX(u;0), the orders of the quantile
Xa@ = U‘U/\/H and X, = u+0/\/ﬁ have the forms:

®3)
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_E _ 1 _ _}/\/ﬁ —%Xdzd '
= L
= i = Xd H i =
} 2
_F01(\/—)_\/— j € 2

Hence, we havey, -q; = 2Fy, (/ Jn)-1. In the case when n=16 the difference
of the orders is equal to 1/5, that @ —q; =2Fy, (025 -1=1/5. Let us
notice that for increasing sample size, we have

limo(%_%) r|1I£TJO(2F01(\/—) 1) =0.

When X4 has the normal distribution, the length of theeimal (3) depends on
the size of the sample. In the case we will reméye example 20% of
observations when n=16 or 10% when n=81.

3.2. Methods based on position statistics

When the variable pghas asymmetrical distribution then the median mgd(
is the central point of the distribution. The mexis.in the middle of the sorted
data (< Xg<...< Xgr). In a similar way we can define the first quartib be
1/4 of the way through the sorted data.(x), and the third quartile to be 3/4 of
the way through the sorted data ).

For investigation of the variability of the mediamposition statistic called
median absolute deviation is used. The median atesaleviation (MAD) is
defined as the median of the absolute value oflifierence between a variable
and its median, that is MAD{x= med|x — med()|.

For normally distributed gN(l;0), the MAD is given by:

MAD(X g)=0- med|(¥—W)/c|=0.6 %
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Let us notice that u—MAD(Xq)=med(%)-MAD(Xq)=Xga/ay H+MAD(Xq)=
=med(>)+MAD(Xg)= Xy@a) and F(+0.5- MAD(xy)) — F(u—0.5-MAD(x))=0.25
because

F(u+ 0670 /2) - F(u- 0670 /2) = P 24K < 067/2) =
O’ .
= 2Fy, (067/2) -1= 025

We propose taking MAD@ as the upper limitation of the length of the s
including omitted observations of the variable x

We may investigate the symmetry of distribution tbé variable x by
calculating quartiles. When the median is equahaf of the inter-quartile
range, that is medQ&2 (Xyse) —Xqwa), then the distribution is symmetrical.
For right-sided skew distribution we have medk¥: (XisayXqass), and for
left-sided skew distribution med{®¥2 (Xy/4) —Xa@a). FOr variable x having
asymmetrical distribution we propose some methadsdifining the set of
omitted observations.
Proposition 2. Adopting the asymptotic approach for building ttenfidence
interval for the median applying standard erroe (Bawid, 1981) we propose to
define the set of removed observations by the wateimedian plus or minus
standard error”. Hence we propose removing thewioilg observations :

Xl (medx o) —%; med(x4) +%) . (4)

Proposition 3. Another measure of variation is mean absoluteadiewi. The
mean absolute deviation (MeanAD) is defined a®tad:

MeanAD(x,) == 5| ~medxy)|. (5)

The mean absolute deviation takes account of vdtoeszero to half of the
range of observations. Hence we believe that we meayove observations
belonging to the interval “median plus or minus thean absolute deviation
divided by the square root of the number of obdérma n”, namely

MeanAD(x,) MeanAD(x,)

7n 7n ) (6)

xad (MedX ) — ;medXxg) +
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Proposition 4.In experiments there is no such thing as a penfeesurement.
Each measurement contains a degree of uncertainy td the limits of
instruments and the people using them. The unogytaidex for sample size n
has the form 1.859 MAD(X /sqrt(n), where sqrt(n) denotes the square rbot o
The range of omitted values of &an be defined as the median plus or minus
the value of the uncertainty index. We propose rg@ngpthe following central
observations:

Xl (medx,) - 1.850! \I\;I,HAD (X0). e dx)+ 1.8591 \I\;I,HAD (xd)) @)

Above we have given four propositions for definthg set of central values
of observations of the independent variablg called a deflator. These
propositions concern the use of measures of vaniaiich as the standard error,
the mean absolute deviation and the median absdkui@tion. The range of
removed observations is defined as an interval witestral point is the mean
or median of the variablesq2xWe will check the usefulness of the above
propositions on generated data.

4. Monte Carlo simulation

In order to compare the effectiveness of the diesdrmodifications of the
Goldfeld-Quandt procedure we performed a Monte cCsiidy using SEPATH
from Statistica 7.1. We considered sample size @=drtd we used the single
regressor model as applied for example in Goldfetdl Quandt (1965),
Griffiths and Surekha (1986), Carapeto and Holt 00 However we
performed our study in a different way than theathars. In the first step,
values y and x for i=1,2,...,100, were generated from a normalriistion
N(0;1), such that these values;Xy had highly significant correlation. In the
second step we sorted;;k) with respect to x In the third step we omitted
some central observations. We used one of six rdethb defining the set. In
the next step we calculated the Goldfeld-Quandtissitzs. Nine hundred
replications were generated. In the last step vieulzded the p-value for the
Goldfeld-Quandt test and the cumulative frequenicgases in which the null
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hypothesis is not rejected. The power of the Gddd€@uandt test was
calculated using Statistica 7.1 for first five huedlireplications.

We concentrate now on comparing different methaatsofmitting central
observations. Two standard methods are consideray] the first method was
described by Goldfeld and Quandt (1965) and therskby, for example, Buse
(1984). The first method involves use of the tegtheut removing central
observations, and in the second method twenty pemrfecentral observations
are omitted. These two methods are compared witfoow propositions.

Table 1 displays the experimentally calculated mpamlue, cumulative
frequency of cases in which the null hypothesisasrejected on significance
level 0.05 or 0.01 or 0.001 and mean power of th@dfeld-Quandt test
tabulated by six methods.

Table 1.Mean p-value, cumulative frequency of cases in Wwhiall hypothesis is not rejected
(0=0.05, 0.01, 0.001), mean power of the Goldfielda@dt test for Monte-Carlo experiments and
number of removed observations (nro)

Set of omitted observations p-value frequency poweNro
0.05 0.01 0.001

Null 0.2518 0.891 0.978 0.997 0.1267 0.0
20% central observations 0.2488 0.904 0.983 0.998257 20.0
mean = standard error 0.2486 0.900 0.981 0.998 46.12 7.9
median * standard error 0.2521 0.896 0.983 0.998233 838
median + MeanAD/sqrt(n) 0.2540 0.898 0.982 0.99812p5 7.1
median + 1.859- MAD/sqrt(n) 0.2511 0.897 0.984 0.9981245 10.6

The magnitude of the differences in the p-valuesoaf propositions
compared with the two methods from earlier paperssmall (<1%). We
obtained the smallest p-value for the interval “mgxdus or minus standard
error”. The power given in Table 1 clearly indicatthat the power of the
Goldfeld-Quandt test depend upon the number oftethibbservations but it is
not true that power increases monotonically asrthiaber tends to null.

This consideration shows that the standard meteodrmmended by many
authors (20% omitted central observations) gives #ame result as our
methods. When we make measurements, we have noofvkgowing how
accurate the values are. The use of variation measuch as standard error,
median absolute deviation or standard uncertairékemt possible to avoid
taking an overoptimistic view of reality. By perfoing 'truthful' analysis, we
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can refine the Goldfeld-Quandt procedure. We uncawel take advantage the
major sources of the uncertainty. In doing so, ve® unformation about
measurements.

5. Research problem

Regression models in environment research, anicplary the estimated
standard errors, rely upon the assumption thatrdbeluals are independently
and identically distributed. Two common violaticsfghis assumption are serial
correlation and heteroscedasticity. We assume dbaal correlation is not a
significant issue. However heteroscedasticity, Whigfers to non-constant error
variance, is a common problem in environment regpasmodels.

The present analysis is based on the results e&rels described in example
4.7 by Maddala (2006). In this example six variablere described. The price
of land per acre is here called the dependenthlariabelled y, the percentage
afforested area is labelled, xhe distance of the land parcel from the airsort
labelled %, the distance from the highway is labelleg the area of the land
parcel is labelled xand the month in which it was sold is labelled khe
dependent variable y and two independent variablesd % were transformed
and denoted respectively Iny, Inand Inx. The independence variable inz
called the deflator. Hence we can writgslrxs. Table 2 displays classical and
position statistics tabulated by the six variables.

The analysis began with a study of homoscedastioityeach independent
variable separately and the dependent variablel€Tap We performed the
Goldfeld-Quandt test using six methods of definittge set of omitted
observations, separately. The same analyses wede fioa two groups of
independent variables, in which we sorted thesa dath respect to gInxs.
We performed the Goldfeld-Quandt test for two gtgcompare their results.
We calculated the median absolute deviation of theflator
MAD(x 4)=MAD(Inx3)=0.397 and inter-quantile range y&%yXd/5)=0.2809.
Table 3 examines the p-value for these analysesttadumber of omitted
observations of the deflator Inxor two standard methods and our four
propositions for defining the set of omitted obsgions. For the last two
analyses we also calculated the power of the test.
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Table 2.Classical statistics and position statistics forwagables considered in example 4.7
by Maddala (2006)

Iny X1 INX, InXs Xa Xs5
Mean 8.393 0.317 2.657 1.431 61.93 23.8
Standard deviation 0.523 0.452 0.510 0.827 116.78.5 1
Standard error 0.064 0.055 0.062 0.101 14.27 1.4
Median 8.466 0.000 2.741 1.411 20.00 24.0
Minimum observation 6.770 0.000 1.253 -2.303 350 .0 2
Maksimum observation 9.700 1.000 3.757 3.418 656.006.0

Before we consider the influence of a defined ofof@mitted observations
on the p-value and power of the Goldfeld-Quandt iegs necessary to make a
short digression on the relation between the madaibf the sets considered. In
the example the greatest number of observatiormgelto the second standard
set (20%-n=13), but the smallest p-value and tlyhdsit power is for the
propositions “mean plus or minus standard deviatiand “median plus or
minus standard deviation”. In the respective setsshave 9 observations in
each. For the next two propositions, based on nazsolute deviation or
median absolute deviation, we obtained worse r®sult

6. Conclusion

To conclude our considerations we offer four meghimd building the set of
omitted observations. On the basis of the MontéoGamulation we generally

prefer first proposition. Proposition 1 is prefefravhen the deflator has
symmetrical distribution, proposition two when tistribution is asymmetrical.

For the considered research problem the resulesacfi application of the
Goldfeld-Quandt test are different. In many cases ropositions are better
than the second standard method considered herehotite based on
measurement of the deviation of the deflator ateebéhan the removal of 20%
central observations without regard to their disttion.

We should reiterate that the use of variation messsuch as standard
error, median absolute deviation or standard uaieyt makes it possible to
avoid taking an overoptimistic view of reality.
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