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SUMMARY  

Some methods of using the Goldfeld-Quandt test are described. The use of classical 
statistics (mean, standard deviation) or position statistics (median, average deviation, 
median absolute deviation) is proposed. The results can be used to test the hypothesis 
that the residuals from a linear regression are homoscedastic, when the experimental 
distribution of the considered variable is symmetrical or asymmetrical (right-sided skew 
or left-sided skew). Using Monte Carlo method, properties of these modifications of the 
Goldfeld-Quandt procedure are explored. A comparison of the effectiveness of the 
described methods for environment research is presented.  

Key words: Goldfeld-Quandt test, heteroscedasticity, linear regression, position 
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1. Introduction 

The pure sciences have wide application to experimentation in the field of 
environmental engineering. Statistics and econometrics offer quantitative 
methods which are an important tool in the analysis of results of environment 
research. These include research on the content of the air, air quality being an 
important issue. High air quality means that the level of pollution of the air is 
low. Pollution may come from sources which are either natural or 
anthropogenic (caused by human activity). Natural pollution is produced mainly 
by forest fires or the decomposition of living organisms, while anthropogenic 
sources include transport, fuel burning, industrial processes and others. The 
quality composition of the air is variable, and what is worse there arise 
secondary pollutants, which are often more toxic and harmful than the primary 
ones. The course of these processes depends on many factors, including the 
spatial distribution of concentrations. Another important aspect is the “asphalt 



 
 
 
 

A. Budka, D. Kachlicka, M. Kozłowska 

 
 
 
 
44 

effect”. When we cover the soil surface with an impermeable layer of concrete 
or asphalt, the damp from the ground cannot pass to the air. The air becomes 
dry and susceptible to pollution.  

Therefore a fundamental criterion to consider when buying a plot of 
building land is its position. Research into the effect on land prices of, among 
other things, the distance of the plot from the nearest highway and airport 
requires certain conditions to be checked, which we do using the Goldfeld-
Quandt test. The object of this paper is to present certain modifications of the 
use of the Goldfeld-Quandt test for investigating the presence of 
heteroscedasticity.  

2. Framework 

 We consider thelinear model  

y = X β  + ε,                             (1) 

where y is an n x 1 vector of observations on the dependent variable, 
X=[1, x1, …, xk-1] is an n x k matrix of observations on k-1 independent 
variables, β  is a k x 1 vector of unknown parameters, and ε is an n x 1 random 
vector of errors, where 1 is the vector of ones. We assume that errors are 
normally distributed and the value of the error term corresponding to an 
observed value of the dependent variable is statistically independent of the 
value of the error term corresponding to any other observed value of the 
variable. The error is the distance between the observed value of the dependent 
variable and its expected value. This expectation is labelled E(y) and 
E(y) = X β , because we assume that E(ε) = 0, where 0 is the null vector. In 
order for the estimates of the parameters not to be biased (or best linear 
unbiased estimates) one more assumption should hold: the variance should be 
constant. The variance matrix is labelled D(ε) and D(ε) = I2σ , where I  is the 
identity matrix. If we observe departures from these assumptions then the 
estimators of the parameters are biased and consequently they are not best or 
other drawbacks may to be. Hence control of the model is a very important part 
of the regression analysis.  

It is well known that in the presence of heteroscedasticity of error variances 
D(ε)=diag( ),...,, 2

n
2
2

2
1 σσσ , the least squares method has two major drawbacks: 



 
 
 
 

Notes on the use of the Goldfeld-Quandt test for heteroscedasticity 

 

45 

inefficient parameter estimates and biased variance estimates which make 
standard hypothesis tests inappropriate.  

Known tests for heteroscedasticity based on error analysis include, for 
example, the most popular Goldfeld-Quandt test, the Breusch-Pagan test and the 
White test, described respectively by Goldfeld and Quandt (1965), Breusch and 
Pagan (1979), White (1980). The literature on testing for heteroscedasticity 
includes many more tests (see Dufour et al., 2004). The test for 
heteroscedasticity in regression models based on the Goldfeld–Quandt 
methodology defined by Carapeto and Holt (2003) also deserves attention. 

Most of these tests are what Goldfeld and Quandt call non-constructive 
tests, in that they can be used to determine the presence or absence of 
heteroscedasticity, but reveal nothing about the form of the variance structure 
(Buse, 1984). 

We are interested in testing for heteroscedasticity in situations with known 
deflator. Our null hypothesis is H0: 

22
i σ=σ  for i=1,2,…,n, and the alternative 

hypothesis is H1: ~H0 (the symbol ~ denotes negation). The Goldfeld-Quandt 
test is proposed by, for example, Goldfeld and Quandt (1965), Buse (1984) or 
Maddala (2006) for verification of the null hypothesis.  

The test proposed by Goldfeld-Quandt (1965) is carried out in four steps. In 
the first step we must sort the multivariate variable with respect to the choice of 
one independent variable, for example xd, d∈{l: l=1,2,…,k-1}. This variable is a 
potential deflator. Next, in the second step, we can discard one or more central 
observations. In the third step, we fit separate regression analyses to each of two 
remaining sets of observations. In the last step, we form the statistic, which has 
F-distribution. The statistic is the quotient of the mean squares for error from 
the separate regressions.  

Let xd1≤ xd2≤…≤ xdn, where the second subscript denotes the number of 
observations of the variable xd. We obtain a set of observations of the 
multivariate variable in the new ordering. Now we consider model (1) in the 
form 
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where for j=1, 2, 3,  yj and εεεεj are nj x 1 vectors, X j is an nj x k dimension matrix. 
Goldfeld and Quandt (1965) state that the vector y2 includes some central 
observations after they are sorted with respect to the chosen potential deflator. 
The choice of the n2 x 1 dimension vector y2 is the subject of consideration in 
the next section. The choice of the vector y2 follows as a consequence of the 
choice of central observations of the variable xd. Goldfeld and Quandt (1965) 
state that the dimension of vectors y1 and y3 is the same, but other authors, for 
example Thursby (1982), Dufour et al. (2004), take into account varying 
dimensions of these vectors.  

Goldfeld and Quandt (1965) proposed using the test for heteroscedasticity 
after the removal of some number of central observations. They did not specify 
how many observations should be removed. They gave the relative frequency of 
cases in which the false hypothesis is rejected for samples of dimension n=30 
and n=60 after omitting 0, 4, 8, 12 or 16 central observations, and they 
estimated the power of the test. They obtained the largest frequency for n=30 
and n=60 after the omission, respectively, of 8 and 16 central observations 
(equal to 26.7%). Buse (1984) analysed the problem for n=20, 40, 80 removing 
20% of central observations. The same dimension of the removed set of 
observations was used by Dufour et al. (2004) for n=50 and n=100. Maddala 
(2006) suggests the removal of central observations to increase the power of the 
test, but he does not answer the question of how many observations to remove.  

3. Results 

We must quote here two sentences formulated by Goldfeld and Quandt 
(1965): (i) “The power of this test will clearly depend upon the value of n2, the 
number of omitted observations; for every large value of n2 the power will be 
small but it is not obvious that the power increases monotonically as n2 tends to 
0”, (ii) “The power of the test will clearly depend on the nature of the sample of 
values for the variable which is the deflator. Thus, if the variance of xd is small 
relative to the mean of xd the power can be expected to be small and 
conversely”.  

We believe that the number of omitted observations depends on the 
precision of the measurements carried out and on their distribution.  
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The distribution of the independent variable called the deflator may be 
defined by a cumulative probability function labelled F(xd). If for a value xd(q), 
where q∈(0;1), the cumulative probability function F(xd(q)) is equal to q, then 
xd(q) is called a quantile of order q. Lower quartile, median and upper quartile 
are measures of location and are labelled xd(1/4), xd(1/2) and xd(3/4) respectively. Let 
us recall that many authors suggest removing 20% of observations; these are 
values of the variable xd within the interval (xd(2/5); xd(3/5)).  

When for a set of several measurements the mean has been calculated, the 
standard deviation can be calculated for the set too. The standard deviation tells 
us how repeatable the placement of the measure is, and how much this 
contributes to the uncertainty of the mean value. From these, the estimated 
standard deviation of the mean (the standard error) may be calculated. The 
standard deviation of the mean has also been called a standard uncertainty. The 
standard uncertainty is a margin whose size can be thought of as ‘plus or minus 
one standard error’. We propose using classical statistics or position statistics 
with the aim of defining the set of removed observations.   

3.1. Method based on classical statistics 

Proposition 1. When the variable xd has symmetrical distribution, the mean 
is the central point of the distribution. We assume that standard error is the 
measure of deviation from the mean. From the set of observations of variable 
xd, such that xd1≤ xd2≤…≤ xdn, we propose to remove all observations belonging 
to the interval defined by the mean of the variable plus or minus the standard 
error, that is 

xdi∈ )
n

ˆ
ˆ;

n

ˆ
ˆ(

σ+µσ−µ ,                          (3) 

where µ̂  and σ̂  are estimates of the mean and standard deviation of the 
variable xd respectively.  

Let us notice that, for the variable xd∼N(µ;σ), the orders of the quantile 
nx )q(d 1

σ−µ=  and  nx )q(d 2
σ+µ=  have the forms: 
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Hence, we have 1)n/1(F2qq 1;012 −=− . In the case when n=16 the difference 
of the orders is equal to 1/5, that is 5/11)25.0(F2qq 1;012 =−=− . Let us 
notice that for increasing sample size, we have  

0)1)
n

1
(F2()qq( 1;0

n
12

n
limlim =−=−

∞→∞→
.  

When dx  has the normal distribution, the length of the interval (3) depends on 
the size of the sample. In the case we will remove for example 20% of 
observations when n=16 or 10% when n=81.  

3.2. Methods based on position statistics 

When the variable xd has asymmetrical distribution then the median med(xd) 
is the central point of the distribution. The median is in the middle of the sorted 
data (xd1≤ xd2≤…≤ xdn). In a similar way we can define the first quartile to be 
1/4 of the way through the sorted data (xd(1/4)), and the third quartile to be 3/4 of 
the way through the sorted data (xd(3/4)). 

For investigation of the variability of the median, a position statistic called 
median absolute deviation is used. The median absolute deviation (MAD) is 
defined as the median of the absolute value of the difference between a variable 
and its median, that is MAD(xd) = med|xd − med(xd)|. 

For normally distributed xd∼N(µ;σ), the MAD is given by:  

MAD(x d)=σ·med|(xd−µ)/σ|=0.67σ   
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Let us notice that µ−MAD(x d)=med(xd)−MAD(x d)=xd(1/4), µ+MAD(xd)= 
=med(xd)+MAD(xd)= xd(3/4) and F(µ+0.5·MAD(xd)) − F(µ−0.5·MAD(xd))=0.25 
because 

25.01)2/67.0(F2                         

)2/67.0|
x

(|P)2/67.0(F)2/67.0(F

1;0

d

=−=
=<

σ
µ−

=σ−µ−σ+µ .  

We propose taking MAD(xd) as the upper limitation of the length of the interval 
including omitted observations of the variable xd.  

We may investigate the symmetry of distribution of the variable xd by 
calculating quartiles. When the median is equal to half of the inter-quartile 
range, that is med(xd)=½ (xd(3/4) −xd(1/4)), then the distribution is symmetrical. 
For right-sided skew distribution we have med(xd)<½ (xd(3/4)−xd(1/4)), and for 
left-sided skew distribution med(xd)>½ (xd(3/4) −xd(1/4)). For variable xd having 
asymmetrical distribution we propose some methods for defining the set of 
omitted observations.  
Proposition 2. Adopting the asymptotic approach for building the confidence 
interval for the median applying standard error (see Dawid, 1981) we propose to 
define the set of removed observations by the interval “median plus or minus 
standard error”. Hence we propose removing the following observations : 

xdi∈ )
n

ˆ
)x(med;

n

ˆ
)x(med( dd

σ+σ− .                        (4) 

Proposition 3. Another measure of variation is mean absolute deviation. The 
mean absolute deviation (MeanAD) is defined as follows: 

∑ −=
i

ddid |)x(medx|
n

1
)x(MeanAD .                          (5) 

The mean absolute deviation takes account of values from zero to half of the 
range of observations. Hence we believe that we may remove observations 
belonging to the interval “median plus or minus the mean absolute deviation 
divided by the square root of the number of observations n”, namely  

xdi∈ )
n

)x(MeanAD
)x(med;

n

)x(MeanAD
)x(med( d

d
d

d +− .           (6) 
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Proposition 4. In experiments there is no such thing as a perfect measurement. 
Each measurement contains a degree of uncertainty due to the limits of 
instruments and the people using them. The uncertainty index for sample size n 
has the form 1.859 MAD(xd) /sqrt(n), where sqrt(n) denotes the square root of n. 
The range of omitted values of xd can be defined as the median plus or minus 
the value of the uncertainty index. We propose removing the following central 
observations: 

xdi∈ )
n

)x(MAD859.1
)x(med;

n

)x(MAD859.1
)x(med( d

d
d

d
⋅+⋅−            (7) 

Above we have given four propositions for defining the set of central values 
of observations of the independent variable xd called a deflator. These 
propositions concern the use of measures of variation such as the standard error, 
the mean absolute deviation and the median absolute deviation. The range of 
removed observations is defined as an interval whose central point is the mean 
or median of the variable xd. We will check the usefulness of the above 
propositions on generated data. 

4. Monte Carlo simulation 

In order to compare the effectiveness of the described modifications of the 
Goldfeld-Quandt procedure we performed a Monte Carlo study using SEPATH 
from Statistica 7.1. We considered sample size n=100 and we used the single 
regressor model as applied for example in Goldfeld and Quandt (1965), 
Griffiths and Surekha (1986), Carapeto and Holt (2003). However we 
performed our study in a different way than these authors. In the first step, 
values yi and xi for i=1,2,…,100, were generated from a normal distribution 
N(0;1), such that these values (yi;xi) had highly significant correlation. In the 
second step we sorted (yi;xi) with respect to xi. In the third step we omitted 
some central observations. We used one of six methods of defining the set. In 
the next step we calculated the Goldfeld-Quandt statistics. Nine hundred 
replications were generated. In the last step we calculated the p-value for the 
Goldfeld-Quandt test and the cumulative frequency of cases in which the null 
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hypothesis is not rejected. The power of the Goldfeld-Quandt test was 
calculated using Statistica 7.1 for first five hundred replications.  

We concentrate now on comparing different methods for omitting central 
observations. Two standard methods are considered here; the first method was 
described by Goldfeld and Quandt (1965) and the second by, for example, Buse 
(1984). The first method involves use of the test without removing central 
observations, and in the second method twenty percent of central observations 
are omitted. These two methods are compared with our four propositions.  

Table 1 displays the experimentally calculated mean p-value, cumulative 
frequency of cases in which the null hypothesis is not rejected on significance 
level 0.05 or 0.01 or 0.001 and mean power of the Goldfeld-Quandt test 
tabulated by six methods. 

  
Table 1. Mean p-value, cumulative frequency of cases in which null hypothesis is not rejected 

(α=0.05, 0.01, 0.001)‚ mean power of the Goldfield-Quandt test for Monte-Carlo experiments and 
number of removed observations (nro) 

Set of omitted observations p-value frequency power Nro 
  0.05 0.01 0.001   
Null 0.2518 0.891 0.978 0.997 0.1267 0.0 
20% central observations 0.2488 0.904 0.983 0.998 0.1257 20.0 
mean ± standard error 0.2486 0.900 0.981 0.998 0.1245 7.9 
median ± standard error 0.2521 0.896 0.983 0.998 0.1233 8.8 
median ± MeanAD/sqrt(n) 0.2540 0.898 0.982 0.998 0.1225 7.1 
median ± 1.859·MAD/sqrt(n) 0.2511 0.897 0.984 0.998 0.1245 10.6 

 
The magnitude of the differences in the p-values of our propositions 

compared with the two methods from earlier papers is small (<1%). We 
obtained the smallest p-value for the interval “mean plus or minus standard 
error”. The power given in Table 1 clearly indicates that the power of the 
Goldfeld-Quandt test depend upon the number of omitted observations but it is 
not true that power increases monotonically as this number tends to null.    

This consideration shows that the standard method recommended by many 
authors (20% omitted central observations) gives the same result as our 
methods. When we make measurements, we have no way of knowing how 
accurate the values are. The use of variation measures such as standard error, 
median absolute deviation or standard uncertainty make it possible to avoid 
taking an overoptimistic view of reality. By performing 'truthful' analysis, we 
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can refine the Goldfeld-Quandt procedure. We uncover and take advantage the 
major sources of the uncertainty. In doing so, we use information about 
measurements. 

5. Research problem 

Regression models in environment research, and particularly the estimated 
standard errors, rely upon the assumption that the residuals are independently 
and identically distributed. Two common violations of this assumption are serial 
correlation and heteroscedasticity. We assume that serial correlation is not a 
significant issue. However heteroscedasticity, which refers to non-constant error 
variance, is a common problem in environment regression models.  

The present analysis is based on the results of research described in example 
4.7 by Maddala (2006). In this example six variables were described. The price 
of land per acre is here called the dependent variable labelled y, the percentage 
afforested area is labelled x1, the distance of the land parcel from the airport is 
labelled x2, the distance from the highway is labelled x3, the area of the land 
parcel is labelled x4 and the month in which it was sold is labelled x5. The 
dependent variable y and two independent variables x2 and x3 were transformed 
and denoted respectively lny, lnx2 and lnx3. The independence variable lnx3 is 
called the deflator. Hence we can write xd=lnx3. Table 2 displays classical and 
position statistics tabulated by the six variables.  

The analysis began with a study of homoscedasticity for each independent 
variable separately and the dependent variable (Table 3). We performed the 
Goldfeld-Quandt test using six methods of defining the set of omitted 
observations, separately. The same analyses were made for two groups of 
independent variables, in which we sorted these data with respect to xd=lnx3. 
We performed the Goldfeld-Quandt test for two groups to compare their results. 
We calculated the median absolute deviation of the deflator 
MAD(x d)=MAD(lnx3)=0.397 and inter-quantile range (xd(3/5)-xd(2/5))=0.2809. 
Table 3 examines the p-value for these analyses and the number of omitted 
observations of the deflator lnx3 for two standard methods and our four 
propositions for defining the set of omitted observations. For the last two 
analyses we also calculated the power of the test.  
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Table 2. Classical statistics and position statistics for the variables considered in example 4.7  
by Maddala (2006) 

  lny x1 lnx2 lnx3 x4 x5 
Mean 8.393 0.317 2.657 1.431 61.93 23.8 
Standard deviation 0.523 0.452 0.510 0.827 116.78 11.5 
Standard error 0.064 0.055 0.062 0.101 14.27 1.4 
Median 8.466 0.000 2.741 1.411 20.00 24.0 
Minimum observation 6.770 0.000 1.253 -2.303 3.50 2.0 
Maksimum observation 9.700 1.000 3.757 3.418 656.00 46.0 

 
Before we consider the influence of a defined of set of omitted observations 

on the p-value and power of the Goldfeld-Quandt test, it is necessary to make a 
short digression on the relation between the magnitude of the sets considered. In 
the example the greatest number of observations belongs to the second standard 
set (20%·n=13), but the smallest p-value and the highest power is for the 
propositions “mean plus or minus standard deviation” and “median plus or 
minus standard deviation”. In the respective sets we have 9 observations in 
each. For the next two propositions, based on mean absolute deviation or 
median absolute deviation, we obtained worse results. 

6. Conclusion 

To conclude our considerations we offer four methods for building the set of 
omitted observations. On the basis of the Monte Carlo simulation we generally  

prefer first proposition. Proposition 1 is preferred when the deflator has 
symmetrical distribution, proposition two when the distribution is asymmetrical.  

For the considered research problem the results of each application of the 
Goldfeld-Quandt test are different. In many cases our propositions are better 
than the second standard method considered here. Methods based on 
measurement of the deviation of the deflator are better than the removal of 20% 
central observations without regard to their distribution.  

We should reiterate that the use of variation measures such as standard 
error, median absolute deviation or standard uncertainty makes it possible to 
avoid taking an overoptimistic view of reality.   
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